Friday, September 19, 2014

Music Man JP comparison chart

After his solid Ibanez JPM, it seems that John Petrucci doesn’t know what he wants, so he changes the specs of his signature guitar each year. There are way too many versions so far, and no single place where you can find all the specs together, so I compiled a comprehensive chart of all John Petrucci models with Ernie Ball Music Man.

Note: this chart doesn’t include the dozens of limited series that have been released, just the standard specs.

Year Model Body Neck Fingerboard Bridge PU Neck PU F radius Frets
2000 JP6 Basswood Birdseye maple Rosewood Custom, based on
Evolution (ref)
Custom, based on
Air Norton
15"
381mm
High wide
h .047", w .104"
h 1.19, w 2.64mm
2005 D-Sonic
2007 JP6 BFR Alder,
maple top,
mahogany block
Mahogany Rosewood or ebony
2008 JP6 Basswood Birdseye maple Rosewood Crunch Lab LiquiFire
JP6 BFR Alder,
maple top,
mahogany block
Mahogany Rosewood or ebony
JP6 BFR Baritone
2010 JPX Chambered alder,
maple top,
mahogany block
Ebony Jumbo
h .057", w .110"
h 1.45, w 2.79mm
2011 JPXI Alder,
maple top,
mahogany block
20"
508mm
Medium jumbo
h .051", w .108"
h 1.30, w 2.74mm
2012 JP12 Basswood,
maple top,
mahogany block
2013 JP13 Rosewood Illuminator Illuminator 17"
432mm
2014 Majesty Basswood,
maple top
Mahogany, neck-thru Ebony
2015 JP15 African mahogany,
maple top
Roasted maple
Majesty Artisan Honduran mahogany,
neck-thru
Ebony
2016 JP16 Basswood Roasted maple Smokey ebony Sonic Ecstasy Sonic Ecstasy
2017 Majesty Monarchy African mahogany,
maple top
Honduran mahogany,
neck-thru
Ebony
2019 Dreamcatcher Rainmaker
2021 JP 20th Honduran mahogany,
maple top
Honduran mahogany Crunch Lab LiquiFire 15"
381mm
High wide
h .047", w .104"
h 1.19, w 2.64mm
Majesty 20th Honduran mahogany,
neck-thru
Dream Catcher Rainmaker 17"
432mm
Medium jumbo
h .051", w .108"
h 1.30, w 2.74mm
Majesty 8 Basswood Mahogany, neck-thru

Other changes:

  • On the first model, the following are optional: piezo, matching headstock, shield fretboard inlays. A “full loaded” specimen has all three.
  • Compensated nut was introduced in early 2006.
  • The BFR Baritone has a 27.5" scale length.
  • Stainless steel frets debuted with the JPXI in January 2011, and later became standard on all JP models ordered since January 2012.
  • The rectangular tremolo base plate was introduced in August 2011.
  • In 2011 the piezo saddles changed for ones with lower output; because of this, the preamp was changed for one with a higher output to compensate.
  • The BFR logos (on the 12th fret) were retired from all models with the release of the JP13, in early 2013.
  • The JP12 was the last model to feature a passive circuit for the magnetic pickups, which can work without a battery. The JP13 and all later models feature an active circuit for everything, including the magnetic pickups: without batteries guitar has no sound.
  • Around October 2016 the logo at the back of the headstock changed, from “Made in San Luis Obispo California, USA” to “Californa heritage, since 1974” with a bear picture.
  • The JP16 has a Korean-made Floyd Rose bridge, and no piezo system.
  • In 2019, the Majesty eletronics layout was redesigned, with less wiring in the back cavity. The layout of the back controls is different.
  • The Majesty 8 has a fixed bridge and it’s 25 to 27" multi-scale.

This chart was last updated in 2024-04-02.

Saturday, August 9, 2014

A balanced .008 gauge string set for guitar

Last month I restrung my 2004 Music Man JP6 with a .008 gauge string set, D’Addario EXL130. I started to feel very uncomfortable with the G string, because it has so much more tension than all the others. I even considered trading the JP6 for an Ibanez Jem, which I travelled about 150 km just to test for a couple minutes, and it felt good on my fingers, possibly due to my 8 years playing exclusively a 1996 UV7BK.

Then yesterday I took a different direction and it came to my mind the idea of assembling a balanced string set, thus fixing the problem with the heavy G string. I know that there are commercial balanced sets, but they just alleviate the problem, not fixing it. I found this excellent post on Jemsite, where the guy made a comprehensive chart with all D’Addario sets and tension of each string. The .008 data confirmed what my fingers already knew: the G string is much heavier than it should. Also, the A string is slightly heavier, but I really didn’t felt it that much.

What I can’t really understand is why all the string sets are so unbalanced, and why so few people complain about it.

In order to find the right gauge to balance my .008 set, I found a handy online calculator for string tension, not very intuitive, but accurate. With it, I found the gauge of .013 for the G string, instead of the .015, to balance my .008 set. The B string of an ordinary .010 set – D’Addario EXL110 – is exactly .013, so if I buy such a set I could pick the B string and use it. Also, the D string is a .026 gauge, which could replace my current A of .030, making my set more even.

After replacing these two strings, and loosening the spring claw and the truss rod a bit, my JP6 felt a lot better. Instant gratification. The heaviness of the G is finally gone, the bends are easier, and the slightly loosened A added a very smooth feel to the wound strings. And I love loose strings. Here is the tension chart comparison:
Ordinary (unbalanced) .008 set:

E: .008" [PL] = 10.38 pounds
B: .010" [PL] = 09.10 pounds
G: .015" [PL] = 12.90 pounds
D: .021" [NW] = 12.05 pounds
A: .030" [NW] = 14.05 pounds
E: .040" [NW] = 12.11 pounds

Total tension = 70.59 pounds
My balanced .008 set:

E: .008" [PL] = 10.38 pounds
B: .010" [PL] = 09.10 pounds
G: .013" [PL] = 09.68 pounds
D: .021" [NW] = 12.05 pounds
A: .026" [NW] = 11.23 pounds
E: .040" [NW] = 12.11 pounds

Total tension = 64.55 pounds
And I’m not thinking about the Jem anymore. By now.

Saturday, June 14, 2014

Named arguments in C

When experimenting with some C99 features of C, I found a very cool trick to have named parameters, using a feature called designated initializers. The first time I read about designated initializers I must admit I found it to be pretty useless, but as I started testing it out, I ended up finding it very useful, since it can make code a lot more readable. Using it together with variadic macros, it was possible to have a very clean named parameter system.

Straight into the code, this is the technique:
typedef struct { int year; const wchar_t *name; } Foo_args; // parameters
void Foo_func(Foo_args args) {
	int x = args.year + 10; // use the argument
}
#define Foo(...) Foo_func((Foo_args){ __VA_ARGS__ })
And this is how you call the function:
Foo(.year = 2014, .name = L"Rodrigo");
The function calling is clear, and its implementation doesn’t add much noise to the code: I believe the price is payable and the result is worth.

Tuesday, May 13, 2014

Fixing .htaccess in Apache with Ubuntu 12

I have an ordinary Apache installation on an Ubuntu 12 OS, where the root webserver directory is ordinarily pointing to /var/www. I have many subdirectories within it, and I’d like to have one of these subdirectories using clean URLs, specifically becaused I was testing some RESTful API stuff. However, I’ve struggled a bit to make Apache recognize my .htaccess file.

So, after some minor stress, here it is the quick step-by-step guide of what I did, without further explanations:
sudo vim /etc/apache2/sites-available/default
Within the Directory /var/www directive, change AllowOverride None by AllowOverride All. Then run these two commands:
sudo a2enmod rewrite
sudo service apache2 restart
And all of sudden it started working.

Friday, March 28, 2014

A simple alternative to C++ exceptions

I’ve been doing a lot of C++11 research and coding ultimately, and I’m still upset with the C++ exceptions. When reading the concepts, it seems to be a reasonably good alternative to simply return a boolean, but as you try to stuff it in your code, you begin to feel like manipulating a stressed hedgehog. And it’s very frustrating, since you have to stop thinking about your code – what really matters –, to think about the implications of the code you are writing upon the code itself.

Usually, my needs are really simple, I just need an extended way to report a success or a failure from a function. I never wrote something that really needed to tackle differents kinds of errors: it’s just success, or failure with a reason, which usually popped in an alert message box.

After quitting the exceptions, when trying to solve this problem, my first move was to use an extra string pointer as the last parameter to hold eventual error messages. It goes like this:
bool Func(int p1, int p2, wstring *pErr=nullptr) {
	if(false) {
		if(pErr) *pErr = L"Error message.";
		return false;
	}
	if(pErr) *pErr = L""; // all good
	return true;
}

bool Second(float nn, wstring *pErr=nullptr) {
	if(!Func(42, 1337, pErr)) { // will return error message from inner function
		return false;
	} else if(false) {
		if(pErr) *pErr = L"Another error.";
		return false;
	}
	if(pErr) *pErr = L""; // all good
	return true;
}

{
	wstring err;
	if(!Func(42, 1337, &err))
		scream(err.c_str());
}
There is no problem with this approach, and I used it for quite some time. It is clear, and one would have no doubts about what is going on. It is, however a bit cumbersome to write all those pErr checks. So at some point I started considering something else.

My second approach was to use a standard pair as the return type to the function. Something like this:
pair<bool, wstring> Func() {
	if(false)
		return make_pair(false, L"Error description message.");
	return make_pair(true, L"");
}

{
	pair<bool, wstring> ret = Func();
	if(!ret.first)
		scream(ret.second.c_str());
}
I never really used this. It doesn’t look clear enough, and the declaration of the pair variable, just to hold the return value, doesn’t amuse me.

Then I start thinking about writing a “bool on steroids” class, specifically overloading the operator bool, so there would be no need to declare a variable just to hold the result value of the invoked function. This is the class:
#include <string>

class Failed {
public:
	Failed(bool allGood)                   : _hasFailed(!allGood) { }
	explicit Failed(std::wstring reason)   : _hasFailed(true), _reason(reason) { }
	explicit Failed(const wchar_t *reason) : _hasFailed(true), _reason(reason) { }
	virtual ~Failed()                      { }
	operator bool() const         { return _hasFailed; }
	const wchar_t* reason() const { return _reason.c_str(); }
private:
	bool _hasFailed;
	std::wstring _reason;
};
And this is the usage:
Failed Func() {
	if(false)
		return Failed(L"This function failed.");
	return true;
}

Failed Second() {
	if(Failed f = Func()) { // if Func() returned false
		return f; // return from inner function
	} else if(false) {
		return Failed(L"Another error message.");
	}
	return true;
}

{
	if(Failed f = Second())
		scream(f.reason());
}
This approach looks a lot elegant to me. It’s clean, allows the chaining of error messages, and it even allows the inheriting of the Failed class to add more specific error data – although I never really needed this.

The only thing which makes me uncomfortable with this class is the _hasFailed member, which holds a reversed boolean value of the object meaning: if there’s a success, it’s false; if there’s a failure, it’s true. I implemented it this way so that I could use a declaration of the class within an if statement, with no need to declare a variable just to hold the result, as I did on the previous example when I returned a standard pair. Also, it explains why I chose the name “Failed” instead of something like “BigBool”: to explicit the idea of a failure being handled by the if.

Other than that, I consider it a neat approach, and that’s the best solution I could come up with so far.

Saturday, February 15, 2014

Queen 2011 remasters: horrible

As an audophile, I care a lot about my music collection. Some albums do have multiple pressings, with new remastered versions of the same old material. These remasters rarely surpass the originals, they tend to be overcompressed due to the infamous loudness wars, but I always seek to hear them, waiting for a miracle.

Right now I’m listening to the Queen 2011 remasters, which sound all really bad to my ears. I’ve read somewhere that Bob Ludwig was responsible for this work, but it’s hard to believe that such a great professional have done such a shitty job. Some songs – particularly the heavier ones – have so much compression that distortion is openly audible. The Jazz album is the worst one so far, with burnt peaks on all tracks, a mess of noise.

The Sheer Heart Attack song, from News of the World album, is a full block of deafening noise, that gave me a headache before the second minute ended, and I had to skip it. The same for the heavy parts of Brighton Rock and Stone Cold Crazy, from Sheer Heart Attack album. Basically, the songs are ruined, sounding really harsh, overcompressed on every single opportunity.

Label managers of today are not only stupid, they are deaf too. When I see things like this, I only can hope that digital music distribution kills this industry as soon as possible, as it is already happening. With the home studios and the internet, we don’t need their greed anymore.

Wednesday, January 29, 2014

JavaScript anonymous closures

Today I was going to write about my fruitful experiments in JavaScript using anonymous closures, scope and namespacing in general. But I stumbled across two articles that are so good, that I just felt the need to publish the links to both, because they explain everything I was about to write in great detail:
As of today, 3+ years old articles, which are still contemporary and relevant to JavaScript development. Highly recommended reading.

Thursday, January 9, 2014

Logitech, please bring back the wired Trackman Wheel

About 2 years ago I was suffering from some wrist pain, due to countless hours of computer work with an ordinary mouse. I started searching for some device to relieve the pain, and after test several gadgets, I came across the Logitech Trackman Wheel. It’s a trackball which sphere is moved with the thumb, leaving the whole hand resting on the desk. And it’s absolutely great, precise, comfortable, I could use that thing for hours without any signs of tiring.

This week, however, the left click just started acting numb, unresponsive, and I found a video teaching a way that could possibly fix it. After three days, the problem seemed to be unfixable, so I decided to buy another unit of this wonderful thing. But to my surprise, I found out the Logitech discontinued the Trackman Wheel, in favor of a wireless version called M570, which like any laggy wireless device, relies on batteries, which require you to figure out when they start dying, so you can buy more batteries to replace the old ones, if you don’t have them dying in the middle of an online game, for example, case when you’d be screwed. Oh, and also it has an annoying switch to turn on and off, so that’s another thing you have to remember to do. The Trackman is supposed to stay fixed on the desk, so why the hell do you need a wireless version of it?

I’m not the only one who wants the wired Trackman Wheel back, there’s even a group on Facebook with people discussing this. Unfortunately, Logitech didn’t reply the user complains, and so far there’s no hope to have a wired version of our beloved Trackman Wheel.

I could not find any unit to buy, not even on eBay. By now, I’m desperately trying to find a way to fix my old and good Trackman Wheel, to use it for as long as I can. And to Logitech, for blindly joining this wireless bandwagon, I just want to leave a sincere fuck you, Logitech.

Update, Jan 11:
This morning I found a skillful electrician who managed to swap the bad left click component with the middle click one, which was working fine. Now I don’t have a middle click anymore, but at least my beloved Trackman Wheel is usable again.

Tuesday, December 17, 2013

Creating project templates for Visual Studio 2013

There are a couple of project settings that I set for every native C++ Win32 project I want to start, basically, more aggressive optimizations for the release build.

Right now, messing around with my brand new Visual Studio 2013 – which I’m appreciating so far –, I discovered how to create a template project with all the settings I need, including subfolders and files. I found this article which explains the process for an ASP.NET MVC project, but the steps are the same for a C++ one.

The templates are exported as ordinary ZIP files, and importing existing ones is trivial, you just need to copy this ZIP file into the base directory. On my computer, this is the full path for the custom user templates:
C:\Users\Rodrigo\Documents\Visual Studio 2013\Templates\ProjectTemplates
In addition to the project settings, I also put in the template a subdirectory called “src”, my very basic main.cpp file, which contains my wWinMain entry point. It seems that I’ll never have to write it again.

Monday, December 16, 2013

A simple C++ smart pointer class

Until I started using move semantics of C++11, I used this smart pointer class, which is template-based, heavily relies on operator overloading, and uses an instance counter:
template<typename T> class Ptr {
public:
	Ptr()                 : _ptr(NULL), _counter(NULL) { }
	Ptr(T *ptr)           : _ptr(NULL), _counter(NULL) { operator=(ptr); }
	Ptr(const Ptr& other) : _ptr(NULL), _counter(NULL) { operator=(other); }
	~Ptr() {
		if(_counter && !--(*_counter)) {
			delete _ptr;     _ptr = NULL;
			delete _counter; _counter = NULL;
		}
	}
	Ptr& operator=(T *ptr) {
		this->~Ptr();
		if(ptr) {
			_ptr = ptr; // take ownership
			_counter = new int(1); // start counter
		}
		return *this;
	}
	Ptr& operator=(const Ptr& other) {
		if(this != &other) {
			this->~Ptr();
			_ptr = other._ptr;
			_counter = other._counter;
			if(_counter) ++(*_counter);
		}
		return *this;
	}
	bool isNull() const         { return _ptr == NULL; }
	T& operator*()              { return *_ptr; }
	const T* operator->() const { return _ptr; }
	T* operator->()             { return _ptr; }
	operator T*() const         { return _ptr; }
private:
	T   *_ptr;
	int *_counter;
};
Example usage:
struct When {
	int month;
	int day;
};

Ptr<When> GetLunchTime()
{
	Ptr<When> ret = new When(); // alloc pointer to be owned
	ret->month = 12;
	ret->day = 16;
	return ret;
}

int main()
{
	Ptr<When> lunchTime = GetLunchTime();
	// ...
	// no need to delete lunchTime
	return 0;
}
It works fine, but with the implementation of move semantics – which is truly great –, it seems that I don’t need it anymore. So I’m publishing it here for historical reasons.

Sunday, December 15, 2013

C++11 move semantics are amazing

Right now I’m testing Visual C++ 2013, which implements some interesting innovations from C++11 specification. I started taking a look at some of them, and the move semantics instantly caught my attention because they solve a problem I was just facing. I implemented a smart pointer class so that I could return a string object from a function – my own String class, I don’t use STL –, and it was something like this:
Ptr<String> Function() {
	Ptr<String> ret = new String();
	return ret;
}
This worked perfectly fine. What bugged me was that two more allocations are needed on this approach: the internal smart pointer instance counter, and the pointer itself. These two allocations, of course, are summed up to the internal String array allocation, so I ended up with three memory allocations for a trivial string return. That sounded too much to my optimization paranoia.

Now, with the new C++11 move semantics, when we write the constructor and the assignment operator for a class, we write specific code to use when receiving a temporary object, which will be destroyed right after the operation completes – it means we can do whathever we want with this temporary object, no one will bother. After implementing the move semantics on my String class, and on the underneath Array class which powers it, I could rewrite the above function like this:
String Function() {
	String ret;
	return ret;
}
My return object is allocated on the stack, not heap-allocated, so we have saved one allocation. And since I’m not returning a pointer – but rather returning the object my value – we don’t need the smart pointer anymore, so we saved another allocation. In the end, we shrinked down from three to only one single allocation, the internal string array itself. With the move semantics implemented, the internal string array just flies from an object into another, without cloning the whole array.

Right now I feel I won’t even need my smart pointer class anymore, as I’ll refactor all my classes to take advantage of the move semantics: the implications are huge. This will result in a general optimization, saving several memory allocations all around. And that’s amazing. All right, call me a C++11 guy now, it has just got me, I’ve been converted.

Saturday, November 2, 2013

Sound Forge 11: no FX chain apply?

I’m a long time Sound Forge user, since the golden pre-Sony Sonic Foundry days, when the horrendous .NET Framework, a toy for script kiddies, was not needed. I’ve been following the version upgrades until today, when I gladly installed version 11. One of my most used options – applying the FX chain right away – simply disappeared. I’ve been searching around, and I found that I’m not the only one who complains about this.

There’s an alternative way to apply the FX chain through the FX Favorites menu, but it’s cumbersome and you cannot work upon the waveform while it’s open. Ironically, the new FX chain window is one of the “new” things Sony is marketing about. Well, congratulations for messing it out, Sony. I’ll pass.

I rolled back to Sound Forge 10, and I’m keeping it. Let’s see if a future Sound Forge 12 will bring that facility back.